Cambridge O Level

MATHEMATICS (SYLLABUS D)

You must answer on the question paper.
You will need: Geometrical instruments

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You should use a calculator where appropriate.
- You may use tracing paper.
- You must show all necessary working clearly.
- Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in degrees, unless a different level of accuracy is specified in the question.
- For π, use either your calculator value or 3.142.

INFORMATION

- The total mark for this paper is 100 .
- The number of marks for each question or part question is shown in brackets [].

1 (a) Stefan had an annual income of $\$ 21500$ in 2018. His annual income increased to \$22790 in 2019.

Calculate the percentage increase.
(b) Stefan invests $\$ 1260$ in a bank.

The bank pays simple interest at a rate of 2.5% per year.
Calculate the amount Stefan has in the bank at the end of 3 years.

\$

(c) Stefan changes 4300 Indian Rupees (INR) into dollars (\$). The exchange rate is $\$ 1=67.8$ INR.

Work out how much he receives.
Give your answer correct to the nearest dollar.

2 (a) The length of a rectangle is 6 cm more than its width, $w \mathrm{~cm}$.
The perimeter of the rectangle is 37 cm .
Form an equation in w and solve it to find the width of the rectangle.

$$
w=
$$

(b)

28

A rectangle 20 cm by 8 cm is cut from a rectangle 28 cm by 15 cm . Each measurement is given correct to the nearest centimetre.

Calculate the upper bound for the area of the shaded region.

3 A light, L, is fixed on a building 8 m above the base, B, of the building.
(a)

A point, P, is on the horizontal ground 12 m from B.
Calculate the angle of elevation of L from P.
(b)

A ladder is placed on the ground at Q to reach the light, L.
The ladder makes an angle of 70° with the ground.
Calculate $Q L$.
\qquad
(c)

A vertical pole, $R S$, of length 1.6 m is placed touching the horizontal ground.
The light produces a shadow, $T S$, of the pole on the horizontal ground.
$L R T$ is a straight line and $T B=6.5 \mathrm{~m}$.
Calculate $T S$.

$$
T S=
$$

\qquad

4 (a) The table summarises the time, m hours, that each student in a year group spent listening to music in one day.
Some of the results are shown on the histogram.

Time $(m$ hours $)$	Frequency
$0<m \leqslant 1$	8
$1<m \leqslant 1 \frac{1}{2}$	10
$1 \frac{1}{2}<m \leqslant 2$	p
$2<m \leqslant 2 \frac{1}{2}$	14
$2 \frac{1}{2}<m \leqslant 3 \frac{1}{2}$	23
$3 \frac{1}{2}<m \leqslant 5$	18
$5<m \leqslant 7$	12

(i) Use the histogram to find the value of p.

$$
\begin{equation*}
p= \tag{1}
\end{equation*}
$$

(ii) Complete the histogram.
(b) This table summarises the time, c hours, that each student in a group of 50 students spent cooking in one week.

Time (c hours)	Frequency
$0<c \leqslant 2$	8
$2<c \leqslant 4$	16
$4<c \leqslant 6$	15
$6<c \leqslant 8$	7
$8<c \leqslant 10$	4

(i) Calculate an estimate of the mean time spent cooking.
\qquad
(ii) Draw the cumulative frequency diagram.

(iii) Use the cumulative frequency diagram to find an estimate for the median.

5 (a) Solve these simultaneous equations. Show your working.

$$
\begin{aligned}
& 2 x-4 y=11 \\
& 3 x+3 y=-6
\end{aligned}
$$

\qquad

$$
y=
$$

(b) Solve the equation $2 x^{2}=3(8-x)$.

Show all your working and give your answers correct to 2 decimal places.
$x=$
or $x=$
(c) h is inversely proportional to the cube of g. $h=4.5$ when $g=2$.
(i) Find the formula for h in terms of g.

$$
\begin{equation*}
h= \tag{2}
\end{equation*}
$$

(ii) Find the value of g when $h=\frac{32}{3}$.

6 (a)

Two of these cards are chosen at random.
They are placed next to each other to give a two-digit number.
(i) Find the probability that the two-digit number is less than 30 .
\qquad
(ii) List all the possible two-digit numbers that are prime.
\qquad
(iii) Find the probability that the two-digit number is a multiple of 4.
(b) Rowan throws a dice 200 times.

The bar chart shows his results.

(i) Use the bar chart to complete the table of results.

Number on dice	1	2	3	4	5	6
Frequency	46	31	28			

(ii) Using Rowan's results, find the relative frequency that he threw a number less than 3 .
\qquad
(iii) Rowan says that the dice he has thrown is not a fair dice.

Make two comments to explain why the dice may not be fair.
\qquad
\qquad

7 (a) The table shows some values for $y=4^{x}$.

x	0	0.5	1	1.5	2	2.5	3
y			4	8	16	32	64

(i) Complete the table.
(ii) Draw the graph of $y=4^{x}$ for $0 \leqslant x \leqslant 3$.

(iii) By drawing a tangent, estimate the gradient of the curve when $x=2$.
(iv) The solutions of the equation $3\left(4^{x}\right)+a x+b=0$ can be found from the points of intersection of $y=4^{x}$ and $y=20 x-12$.
(a) Find the value of a and the value of b.

$$
\begin{equation*}
a= \tag{2}
\end{equation*}
$$

\qquad $b=$
(b) By drawing the line $y=20 x-12$ on the grid opposite, find all the solutions of $3\left(4^{x}\right)+a x+b=0$.
(b) Here is a sketch of the graph of a quadratic function.

NOT TO
SCALE

The curve has a maximum point (p, q).
Find the value of p and the value of q.

$$
\begin{equation*}
p= \tag{3}
\end{equation*}
$$

\qquad $q=$

8 A birthday cake is in the shape of a cylinder.
There are two layers of cake and one layer of icing.

Each layer of cake has radius 10 cm and height 3 cm .
The icing, between the two layers of cake, has radius 10 cm and height 12 mm .
(a) Calculate the volume of icing in the birthday cake.

Give your answer in cm^{3}.
\qquad cm^{3}
(b) The top and curved surface of the birthday cake are now covered with chocolate.

Calculate the area of the birthday cake that is covered with chocolate.
\qquad cm^{2}
(c) Anil has a slice of this chocolate-covered birthday cake.

His slice is a prism of height 7.5 cm .
The top of the cake is a sector, radius 10.3 cm and angle x°.
The volume of his slice is $200 \mathrm{~cm}^{3}$.
Calculate the value of x.

$$
x=
$$

9 (a)

NOT TO
SCALE
$E M F$ and $G L N H$ are parallel lines.
$L M=L N$ and $G \hat{L} M=126^{\circ}$.
Find $F \hat{M} N$.
Give a reason for each step of your working.

$$
\begin{equation*}
F \hat{M} N= \tag{4}
\end{equation*}
$$

(b)

A, B, C and D are points on the circumference of a circle, centre O.
$B D$ and $A C$ intersect at E and $B C$ is a diameter of the circle.
$A \hat{C D}=x^{\circ}$ and $D \hat{O} C=y^{\circ}$.
Find an expression, in terms of x and/or y, for
(i) $D \hat{B} C$,

$$
\begin{equation*}
D \hat{B} C= \tag{1}
\end{equation*}
$$

(ii) $A \hat{B} D$,

$$
A \hat{B} D=
$$

(iii) $A \hat{E} D$,

$$
A \hat{E} D=
$$

(iv) $B \hat{D} A$.

$$
B \hat{D} A=
$$

10 [Volume of pyramid $=\frac{1}{3} \times$ base area \times height]

$A B C D E$ is a rectangular-based pyramid.
$A C$ and $B D$ intersect at F.
$E F$ is perpendicular to $F C$.
$A D=10 \mathrm{~cm}, D C=6 \mathrm{~cm}$ and $E C=12 \mathrm{~cm}$.
(a) Show that $E F=10.5 \mathrm{~cm}$, correct to 1 decimal place.
(b) Find the volume of the pyramid.
cm^{3}
(c) Calculate $D \hat{E} C$.

$$
\begin{equation*}
D \hat{E} C= \tag{3}
\end{equation*}
$$

(d) Calculate the area of triangle $D E C$.

(a) Describe fully the single transformation that maps triangle A onto triangle B.
\qquad
(b) Triangle A is mapped onto triangle C by the single transformation H .

Find the matrix representing H .
(c) Transformation M is a reflection in the line $x=2$.

Transformation R is a rotation 180° about $(0,0)$.
Triangle A is mapped onto triangle D such that $\operatorname{RM}(A)=D$.
Draw and label triangle D.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

